Ispitivanje premaza za zaštitu podzemnih cjevovoda

Mreža cjevovoda u Republici Hrvatskoj je dugačka. Objavljeno je da približno 759 km cjevovoda srednjeg toka prenosi sirovu naftu. Ti se cjevovodi obično strateški vode pod zemljom na velike udaljenosti, nesmetano okolnim zajednicama. Međutim, ovaj siguran i ekološki prihvatljiv način transporta sirove nafte može stvoriti probleme s obzirom na korozivno okruženje kojem su izloženi podzemni cjevovodi.

Podzemni cjevovodi obično su izrađeni od ugljičnog čelika jer je to isplativa legura s poželjnim mehaničkim svojstvima. Međutim, glavni nedostatak ugljičnog čelika u zemlji je njegova ograničena otpornost na koroziju. Prema podacima koje je tijekom posljednjih 14 godina prikupio sustav praćenja izvedbe cjevovoda (PPTS) od Američkog naftnog instituta (API), korozija je prouzročila 24% svih incidenata u podzemnim cjevovodima koji prenose opasne tekućine.

Radovi na izgradnji cjevovoda za prirodni plin.

Korozivnost tla

Sastav tla se geografski razlikuje, ali je u osnovi agregat minerala, organskih tvari, vode i plinova. Ovi osnovni sastojci tla objašnjavaju njegova svojstva, uključujući korozivnost. Varijacije korozivnosti tla tijekom putanje cjevovoda mogu dovesti do korozije uslijed diferencijalnog naboja, što je glavni razlog korozije vanjske stjenke ukopanih cjevovoda.

Neke od pokretačkih sila korozije tla uključuju, između ostalog, razinu kisika, koncentraciju elektrolita, sadržaj vlage i mikrobiološke populacije. Voda, u kombinaciji s različitim ionskim vrstama prisutnim u tlu, može dovesti do stvaranja jakih elektrolitskih vodenih otopina, koje smanjuju otpor tla i ubrzavaju brzinu korozije. Kapacitet tla za zadržavanje vode jako ovisi o njegovoj teksturi i veličini čestica. Na primjer, tla koja sadrže grubi pijesak čestica relativno velikog promjera imaju ograničeniju sposobnost nakupljanja vode od tla s velikim udjelom sitnijih čestica, poput sitnog pijeska ili gline. Kako su sitnije čestice obično zasićenije vodom od grubog pijeska, cjevovodi okruženi sitnijim česticama obično će biti izloženi okruženju zasićenom vodom.

Kisika kao oksidirajući agens

Zbog uloge kisika kao oksidirajućeg agensa, stupanj prozračivanja drugi je parametar koji utječe na koroziju tla. Iako je grubi pijesak ograničen u sposobnosti nakupljanja vode, učinkovitiji je u prijenosu kisika od sitnijih čestica u tlu. To povećava stupanj prozračivanja, što rezultira ubrzanom korozijom. Iskopavanja radi inspekcije ili popravaka također će povećati razinu kisika. Kako cjevovod putuje u tlu sa različitim koncentracijama kisika, stvaranje diferencijalnih stanica za prozračivanje gotovo je neizbježno. Pozicije cjevovoda izložene tlu s nedostatkom kisika postaju anodna, dok ona u dodiru s visoko prozračenim tlom postaju katodna.

Prisutnost mikrobioloških populacija u tlu može utjecati na koroziju i daljnje propadanje podzemnih cjevovoda srednjeg toka. Ova vrsta korozije, koja se široko naziva mikrobiološkom korozijom (MIC), povezana je s aktivnošću različitih mikroorganizama u tlu. Tlo štiti mnoštvo različitih vrsta bakterija, koje se mogu prilagoditi različitim pH razinama, koncentracijama kisika i temperaturama. Bakterije mogu utjecati na proces korozije stvaranjem biofilmova na površini cjevovoda i stvaranjem koncentracije diferencijala. Unutar biofilma aerobne bakterije ispuštaju kisik, a bakterije koje proizvode kiselinu smanjuju razinu pH. Ova mikrobna aktivnost stvara anode i rezultira lokaliziranom korozijom nalik jamicama. Neke od ovih bakterija su i bakterije koje reduciraju sulfat (SRB), one mogu reducirati sulfatne ione u sulfide i povećati vjerojatnost pucanja uslijed stres korozije.

Vanjska korozija cjevovoda

Vanjska korozija utječe na sve zakopane cjevovode i moramo se boriti protiv nje primjenom učinkovite zaštitne barijere zajedno s sustavima katodne zaštite. Premazi pružaju barijeru između korozivnog okoliša tla i cjevovoda, ujedno izolirajući i supstrat. Katodna zaštita cjevovoda, s druge strane, čini ga katodnim primjenom istosmjerne struje.

Osmay Oharriz, Belzona voditelj naftne i plinske industrije

Trenutno se koristi velika raznolikost premaza za zaštitu ukopanih cjevovoda od ugljičnog čelika, svaki sa svojim prednostima i ograničenjima. Neki od nedostataka uočenih kod premaza povezani su, između ostalog, s ograničenim temperaturnim rasponom, lošom otpornošću na smicanje i tlačno naprezanje, katodnim odvajanjem i ograničenjima primjene.

Ispitivanje materijala

Otpornost premaza na potapanje u tekućine

Kako su podzemni cjevovodi izloženi vodi i otopljenim solima, odabrani premaz mora biti u stanju izdržati kontinuirano izlaganje vodenim otopinama soli. ISO 2812-2 određuje metodu za određivanje učinaka potpunog ili djelomičnog potapanja vode na premaz. Uključuje potapanje presvučenih ploča od ugljičnog čelika u kupku s morskom vodom na 40 ° C (104 ° F) na šest mjeseci. Po završetku ispitivanja, vizualnim pregledom na pukotine, mjehuriće ili raslojavanje utvrđuje se zadovoljava li premaz ili ne.

Otpornost na visokotemperaturno uranjanje

Izviješteno je da vanjska strana nekih cjevovoda može doseći temperature iznad 50˚C (120˚F). To se obično događa u ljetnim mjesecima kada je temperatura zraka i tla najviša. Stoga premaz mora podnijeti povišene temperature bez značajnih znakova propadanja.

Atlas cell test

Otpornost na toplinu i propusnost premaza mogže se odrediti atlas cell testom u skladu s TM0174-1991. Ova se tehnika koristi za dobivanje maksimalne temperature pri kojoj premaz može pružiti prikladnu zaštitnu barijeru u uronjenim uvjetima.

Test uključuje uranjanje premazane ploče u kemijsku otopinu temperaturnih uvijeta koji su usporedivi s predviđenim radnim okruženjem.

Deionizirana voda obično se koristi kao otopina za ispitivanje jer pruža najveću moguću razinu koncentracije, promičući prodiranje vode kroz prevlaku. Test traje šest mjeseci. Premazi se pregledavaju nakon prvog, trećeg i šestog mjeseca ispitivanja. Test se smatra uspješnim ako se ne otkriju pukotine, mjehurići ili hrđa.

Elektrokemijska impedancijska spektroskopija (EIS) metoda je ispitivanja impedancije ili otpora protoku električne struje kroz oblogu u skladu s ISO 16773-2. Ova tehnika može se koristiti zajedno uz atlas cell test. Bilo koja voda koja može prodrijeti kroz premaz smanjila bi impedanciju premaza. Usporedbom izmjerenih vrijednosti prije i nakon atlas cell testa može se odrediti kvantitativna propusnost vode.

Otpornost na pritisak

Podzemni cjevovodi izloženi su značajnim tlačnim naprezanjima povezanim s opterećenjima radi težine tla, težine cjevovoda i težine medija u cjevovodu. Ispitivanje u skladu s ASTM D695 ukazuje na sposobnost premaza da se odupre degradaciji kada je aksijalno napregnuto pod tlakom. Ovaj se postupak sastoji od upotrebe tenzometra od 25 kN za vršenje opterećenja na uzorku odljevka sve dok se ne primijeti puknuće.

Otpornost na smicanje

Promjene temperature i tlaka uslijed različitih radnih uvjeta rezultiraju širenjem i skupljanjem cjevovoda od ugljičnog čelika. Relativan pomak između cjevovoda i tla opteretiti će premaz naprezanjima posmaka. Ako adhezija prevlake ne može nadvladati naprezanja posmaka koja djeluje na cjevovod, može doći do odvajanja prevlake.

Ispitivanje prema ASTM D1002 primjenjuje se za utvrđivanje adhezije odnosno prijonjivosti materijala. U ovoj metodi materijal spaja dvije krute metalne pločice. Nakon što materijal potpuno očvrsne, primjenjuje se tenzometar od 25 kN za vlačno opterećenje na obje ploče u suprotnim smjerovima sve dok ne dođe do prekida zaljepnjenog spoja.

Fleksibilnost i otpornost na puknuće

Premazi naneseni na podzemne cjevovode mogu se rastezati kada podloga propada ili se deformira uslijed neočekivanih opterećenja. To je razlog zašto se premazi cjevovoda ispituju na njihovu sposobnost da se odupru pucanju kada je podloga pod opterećenjem. ASTM D522 je metoda ispitivanja koja u tu svrhu koristi cilindrične trnove. Obložena ploča postavlja se na cilindrične trnove različitih promjera, dok je nepremazana strana ploče u dodiru s trnom. Zatim se ploča savija na 180˚ fiksnom brzinom i odmah pregledava ima li znakova pucanja, raslojavanja ili bilo koje druge degradacije.

Otpornost na katodno odvajanje

Kao što je ranije spomenuto, katodna zaštita se može koristiti zajedno sa sustavom premaza. U premazu se mogu pojaviti rupice ili diskontinuiteti te izložiti cijev neželjnim utjecajima iz tla. U tom slučaju primijenjena katodna zaštita može uzrokovati daljnju degradaciju premaza i koroziju. ASTM G8 pruža metodu ispitivanja za simulaciju ovakvog scenarija. Premazani uzorak namjerno je perforiran kako bi se dobio nedostatak fiksne veličine ili rupice. Zatim je uzorak izložen elektrolitu i električnim naprezanjima na sobnoj ili povišenoj temperaturi (ASTM G42). Testiranje se provodi tijekom 30 dana. Nakon izlaganja, uzorak se vizualno pregledava kako bi se utvrdilo da li su se pojavile nove rupice i nedostatci premaza na rubu početne perforacije, te da li ima znakova degradacije, poput balončića ili pucanja. Što je manje novih oštećenja, to je premaz otporniji na katodno odvajanje.

Da bi premaz bio kvalitetno rješenje za vanjsku koroziju podzemnih cjevovoda, mora pokazati izvrsne rezultate gore spomenutih ispitivanja. Premaz bi također trebao biti ekološki prihvatljiv, ekonomičan i imati jednostavan i praktičan postupak nanošenja.

Studija slučaja

Cijevi u kemijskom postrojenju

Kemijska tvrtka na Tajlandu odlučila je zaštititi vanjsku površinu podzemnog cjevovoda. Cjevovod je prethodno bio premazan polietilenskim premazom i bio je pod jakim utjeajem korozije vanjske stjenke. Podzemna voda visokog saliniteta utjecala je na cjevovod i ubrzala degradaciju i odvajanje prethodne prevlake na određenim područjima. Vlasnik cjevovoda planirao je primijeniti alternativno rješenje premazom. Kupac je proučio sve podatke o ispitivanju i odabrao Belzonu 5811 za zaštitu cjevovoda.

Prije nanošenja sustava zaštitnog premaza cjevovod je opjeskaren prema SSPC-SP 10 standardu čistoće površine. Profil hrapavosti podloge izmjeren je Testex trakom u skladu s NACE SP0287 kako bi se osiguralo 75 μm dubine hrapavosti površine. Površina je očišćena i odmašćena pomoću odgovarajućih kemikalija za čišćenje i odmašćivanje u skladu sa zahtjevima navedenim u SSPC-SP10. Izvođač je za nanošenje koristio Hasco pumpu za bez-zračno sprejanje Belzone 5811. Sustav je nanesen u dva sloja kontrastnih boja i postignuta je minimalna debljina suhog filma od 400 μm.

Stvrdnjavanje premaza bilo je u skladu s Belzoninim uputama za uporabu (IFU). Nakon što se epoksidni materijal stvrdnuo, sustav cjevovoda transportiran je do mjesta ukopa i zatrpan sitnim pijeskom uz primjenjenu katodnu zaštitu.

Cijevi i priklučci premazani sa Belzona 5811 – dvokomponentni epoksi sa 100% udjela krutih tvari

Toplinska izolacija cjevovoda

Industrije i postrojenja širom svijeta suočavaju se s izazovima povezanim s održavanjem toplinske izolacije cjevovoda, spremnika i posuda. Oštećenja i propadanje cijevovoda, ventila i priključaka rašireni su problem; nastaju uslijed korozije, erozije, toplinskih ciklusa i utjecaja kemikalija. Kako bi uštedjele troškove energije i smanjile gubitke, tvrtke prepoznaju važnost toplinske izolacije cijevi i zaštite opreme. Međutim, tu se javlja jedan problem, korozija pod izolacijom. Korozija pod izolacijom je glavni problem koji se javlja na opremi i cjevovodima koji rade u okružju s niskim, ambijentnim i visokim temperaturama.

Toplinska izolacija cjevovoda potrebna je radi smanjenja gubitka topline, za siguran rad mreže cijevovoda zimi, za snižavanje temperature vrelovoda i za zaštitu na radu. Pravilnik o zaštit na radu i standardi nalažu toplinsku izolaciju cjevovoda čija je temperatura veća od 55°C.

Toplinska izolacija cjevovoda
Bez odgovarajuće zaštite, metalne površine na ≥ 60 ° C ili <0 ° C mogu uzrokovati opekline

Štoviše, oprema koja radi u niskim temperaturama i uvjetima ispod nule može se zalediti, kondenzirati i rositi. Rezultat su skliske površine i moguće ozebline ako je temperatura površine ispod 0 °C.

korozija_pod_izolacijom
Primjer korozije pod tradicionalnom izolacijom.

Na tržištu su dostupna različita rješenja poput tradicionalne izolacije, barijera ili zaštitnih premaza na vodenoj bazi. Međutim, pojedinačno ne ispunjavaju sve zahtjeve za toplinsku izolaciju cjevovoda i opreme, dok osiguravaju zaštitu od korozije i osoblja od potencijalnih ozljeda, ozeblina i opeklina.

Nadalje, klasične metoda toplinske izolacije cijevovoda za zaštitu od korozije pod izolacijom nalažu izračune na koje utječu mnogi parametri: dimenzije cjevovoda, razlika temperature, temperatura površine, opterećenja cijevi, utjecaji tlaka, utjecaji vibracije, toplinska vodljivost, moguće deformacije sredstva izolacije i dr.

Svrha toplinske izolacije cijevovoda je da se spriječi smrzavanje cjevovoda, da se osigura stalna radna temperatura cjevovoda i da se spriječi kondnzacija na izolaciji radi koje bi moglo doći do formiranja leda na cijevovodu.

VIŠEFUNKCIONALNI SUSTAV BEZ OTAPALA – BELZONA 5871

Iz tog je razloga Belzona razvila inovativan, dvokomponentni, polimerni sustav bez otapala – Belzona 5871. Ovaj višenamjenski materijal zapravo pruža i toplinsku izolaciju i zaštitu od korozije, istodobno poboljšavajući sigurnost, učinkovitost i trajnost industrijske opreme.

Belzona 5871

Belzona 5871 može se primijeniti na metalne cjevovode, kanale, vanjske dijelove spremnika / posuda i drugu industrijsku opremu. Toplotno je izolirajući i poboljšava učinkovitost istodobno sprječavajući ozljede od opeklina, kondenzaciju i smrzavanje. Za aplikaciju proizvoda prikladno je nekoliko alata: četka, patrona za injektiranje ili zagrijani bezzračni sprej. Stoga je idealan za male, složene geometrije ili brzu primjenu na velikim površinama.

Nakon nanošenja, premaz za zaštitu od korozije stvara laganu pjenu zatvorenih ćelija visoke građe. Zahvaljujući tehnologiji pjenjenja epoksida, ovaj zaštitni premaz širi se i do tri puta više od primijenjene debljine, na pr. primijenjeni 1 mm daje 3 mm očvrsnute debljine, čime se povećava količina proizvoda na površini. Belzona 5871 također ne sadrži otapala, eliminirajući potrebu za dodatnim temeljnim premazom ili završnim slojevima, smanjujući tako potreban broj slojeva u usporedbi s uobičajenim otopinama za premazivanje. Štoviše, vrijeme premazivanja je do 24 sata, bez obzira na temperaturu ili vlagu, pružajući fleksibilnost nanošenja. Brzina očvršćavanja i smanjeni broj slojeva koji su potrebni osiguravaju brz povratak u rad opreme.

POGLEDAJTE VIDEO PRIMJENE BELZONA 5871

Kako aplicirati toplinsku izolacijsku barijeru za zaštitu od korozije i sigurnost

TESTIRANJE

Ispitivanje svojstava toplinske barijere Belzona 5871

Kako bismo testirali svojstva toplinske barijere i odredili debljinu potrebnu za smanjenje površinske temperature ispod 60 °C, uspoređivali smo dio nepokrivene čelične podloge i dio podloge zaštićene Belzonom 5871. Na primjer, Belzona 5871 nanesena u debljini od približno 2,2 mm kako bi se dobila debljina od 6,6 mm, smanjit će površinsku temperaturu sa 120 °C na ispod 60 °C. Belzona 5871 je vrhunska izolacija cijevovoda i sposobna je smanjiti prijenos topline, pružajući tako površinu sigurnu za dodir i zaštitu od opeklina. Testirali smo izolacijska svojstva Belzone 5871 koristeći Lee-ovu disk metodu koja daje nisku toplinsku vodljivost od približno 0,1 W/m.K.

Preporučena debljina primjene Belzone 5871 za smanjenje površinske temperature ispod 60 °C, kako bi se spriječile ozljede kontaktnih opeklina u skladu s ASTM C1055.

Simulirani CUI uvjeti

Simulirali smo uvjete korozije pod izolacijom pomoću grijanih cijevi. Sustav je opetovano ciklirao između 120 °C i 10 °C tijekom razdoblja od 1000 sati s izmjeničnim mokrim (s konstantnim otapanjem vode 5 litara u minuti) i sušnim razdobljima. Nakon testa, višeslojni sustav nije bubrio, nije se raslojavao ili pucao, a nije bilo ni korozije.

Slani sprej – ispitivanje svojstava zaštite od korozije

Proveli smo i test sprejanjem solju na 35 °C, u skladu s ASTM B117. Test je obavljen na jednom sloju Belzone 5871, slijedeći dva različita režima otvrdnjavanja; otvrdnjavanje na ambientalnoj temperaturi od 20 °C i otvrdnjavanje na temperaturi od 120 °C. Na oba uzorka dodana je okomita šipka od 50 mm radi poticanja korozije. Ispitni uzorci nisu pokazivali znakove propadanja zaštite ni nakon 3000 sati neprekidne izloženosti.

Kontinuirano uranjanje u vodu radi ispitivanja zaštite od korozije pod izolacijom

Izvršili smo kontinuirano ispitivanje potapanja u vodu, u skladu s ISO 2812-2, gdje je podloga s jednim slojem Belzone 5871 uronjena u deioniziranu vodu na 40 °C. Belzona 5871 nije pokazivala znakove propadanja nakon 4500 sati (otvrdnuta na temperaturi od 20 °C) i 2000 sati (otvrdnuta na temperaturi od120 °C).

Ova ispitivanja potvrđuju izvrsna svojstva otpornosti na koroziju Belzone 5871 u različitim uvjetima.

Test nakupljanja leda za osporavanje svojstava protiv zaleđivanja i kondenzacije Belzone 5871

Ispitivanjem svojstava stvaranja leda osporili smo svojstva proizvoda protiv zaleđivanja i kondenzacije.
Pokus ispod nule izveden je na jednom, dva i tri sloja Belzona 5871.

Operativna temperatura cjevovoda -8°CDobivena temperatura zaštitePrimjedbe
1 sloj Belzona 5871Temperatura površine 2°CKondenzacija ali bez smrzavanja površine
2 sloja Belzona 5871Temperatura površine 7°CSmanjena kondenzacija bez smrzavanja površine
3 sloja Belzona 5871Temperatura površine 15°CBez kondenzacije površine i bez smrzavanja površine

Test je potvrdio da Belzona 5871 sprječava nakupljanje leda i kondenzaciju čak i na temperaturama ispod nule, što kao rezultat sprječava koroziju pod izolacijom.

Zaključno, Belzona 5871 je inovativno rješenje koje pruža toplinsku izolaciju cijevovoda i opreme za povećanje učinkovitosti i trajnosti. Uz to, zaštita od korozije produžuje vijek trajanja cjevovoda i opreme, smanjujući buduće troškove zamjene. Belzona 5871 također je rješenje zaštite na radu, smanjujući površinske temperature na 60 ° C kako bi se spriječile ozljede od opeklina.

Održavanje obnovljivih izvora energije

ODRŽAVANJE OBNOVLJIVIH IZVORA ENERGIJE

NOVI VAL OBNOVLJIVIH ENERGETSKIH IZVORA

2016. je obilježila niz važnih prekretnica za obnovljive izvore energije u odnosu na konvencionalna fosilna goriva. Svakako je jedan od najznačajnijih bio globalno ulaganje u novu infrastrukturu obnovljivih izvora energije koja je nadmašivala potrošenu na novu fosilnu infrastrukturu. Ova financijska potpora pojačava kako se poboljšala konkurentnost cijena obnovljivih tehnologija, što ih čini znatno pristupačnijim i dostupnijim.

ODRŽAVANJE U INDUSTRIJI OBNOVLJIVIH IZVORA ENERGIJE

OSIGURAVANJE POVRATA ULAGANJA

Osiguranje kontinuiranog povrata ulaganja od presudne je važnosti. Posebice, budući da financiranje i potpora projektima obnovljivih izvora energije nadilaze prednost tradicionalnim energetskim izvorima. To se može postići učinkovitim održavanjem obnovljivih dobara i upravljanjem problemima koji na njih utječu.

Bilo da kroz uranjanje u korozivnu morsku vodu, kontakt s visokim geotermalnim temperaturama ili agresivnom abrazijom koju nameću sile vjetrova, metode iskorištavanja “zelenije” energije nisu bez komplikacija. Po svojoj naravi, hvatanje obnovljivih izvora energije uključuje izlaganje elementima. Neki od njih mogu uništiti strojeve, opremu i strukture koje se koriste u cijeloj industriji.

Širenje sektora obnovljivih izvora energije zasigurno je pozitivno za planet, no održavanje ove “zelene imovine” predstavlja problem s kojim se suočavaju mnoge energetske tvrtke.

Po svojoj naravi, hvatanje obnovljivih izvora energije uključuje izlaganje elementima
Po svojoj naravi, hvatanje obnovljivih izvora energije uključuje izlaganje elementima

RJEŠENJA POLIMERIČKIH ODRŽAVANJA

Vlasnici i operateri zahtijevaju troškovno učinkovno rješenja koja se mogu brzo i jednostavno provesti, ali i osiguravaju dugoročne rezultate. Polimerna rješenja dokazano udovoljavaju tim zahtjevima, dok se bore protiv korozije, erozije i kemijskih napada. Stoga su oni idealni izbor za razne probleme održavanja u većini tržišta električne energije.

Prijelaz na popravak i zaštitu obnovljivih dobara bio je osobito uspješan. Zapravo, najveći napredak postignut je u industriji vjetroelektrana, gdje su polimerni materijali mogli riješiti probleme održavanja od podnožja turbine do samog vrha noževa.

OBNOVLJIVA ENERGIJA – VJETROELEKTRANA

INVESTIRANJE U VJETROELEKTRANE

Od ogromnih investicija u novu obnovljivu infrastrukturu koje su se pojavile u proteklih 24 mjeseci, najveći dio investicija je odlazio u offshore vjetroelektrane.

  • Potrošnja kapitalnih izdataka za ovaj oblik zelene energije dosegla je rekordnih 30 milijardi dolara u 2016. godini.

  • U europskim vodama u izgradnji su projekti na moru koji su jednaki kapacitetu od 27GW.

  • To značajno doprinosi globalnom vjetru kapaciteta 433GW prijavljenom u 2015.

Unatoč tome što je jedan od vodećih oblika obnovljivih izvora energije, izgradnja vjetroturbina i okruženja u kojima djeluju predstavljaju različite probleme iz perspektive održavanja.

Polimerna rješenja mogu se primijeniti na različita područja na vjetrenim turbinama
Polimerna rješenja mogu se primijeniti na različita područja na vjetrenim turbinama

PROBLEMATIKA

Prepoznato je da su najveći problem u industriji vjetroelektrana oštećenja vodećeg ruba. Vrhovi oštrice mogu se okretati i do 300 km / h u izrazito promjenjivim temperaturama, razinama vlažnosti i brzinama izloženosti UV zračenju. Zajedno s oštećenjima od različitih udaraca i čimbenika abrazije, uključujući kišu, prašinu, led, insekte, ptice i munje, to može uzrokovati znatnu eroziju podloge.

Dokazi ukazuju na to da oštećenje vodećeg ruba može smanjiti AEP (godišnju energetsku proizvodnju) vjetroagregata, pri čemu se gubici energije procjenjuju između 4% i 20%, ako je oštećenje erozije značajno. Ovo smanjenje aerodinamičke učinkovitosti ne utječe samo na energiju već također uzrokuje i oštećenja ostalih komponenti turbine. Neravnoteža između noževa može uzrokovati trošenje i oštećenje vratila i mjenjača, uz dodatno opterećenje tornja i podnožja. Sveukupno, ovo smanjuje operativni životni vijek tornja.

Održavanje lopatica turbine
Održavanje lopatica turbine

POPRAVAK I ZAŠTITA LOPATICA

Studije pokazuju da novi set lopatica može koštati ekvivalent od 20-25% izvorne cijene vjetroagregata, dok će manje popravka lopatica koštati samo 10% zamjenskE lopaticE. Među rješenjima za manje popravke lopatica su punila, veziva i trake. Ipak, niti jedan od njih neće pružiti opsežan, dugoročan popravku i zaštitu. U ovim scenarijima, popravak oštećene podloge može se bolje postići s Belzona rekonstruktivnim kompozitnim materijalima i zaštitnim premazima.

Erodirane lopatice mogu se obnoviti na izvornu specifikaciju te premazati sustaviom otpornosti na eroziju i koroziju koji istodobno nudi visoku razinu trajnosti i fleksibilnosti u odnosu na prijetnje od abrazije i udaraca. Umjesto jednostavne reaktivne opcije, ova se rješenja mogu primijeniti proaktivno u OEM stadiju. Ovo štiti najugroženija područja prije puštanja u pogon.

Taj je pristup preuzela japanska, vodeća inženjerska tvrtka u industriji, koja je tijekom proizvodnje specificirala zaštitni polimerni premaz za vodeće rubove lopatica turbine. Tijekom procijenjenih 10 godina od njihove izvorne ugradnje na mjestima diljem SAD-a, ove lopatice su se izdržale učinke erozije izvan očekivanog životnog vijeka.

Obnova i zaštita vodećeg ruba od oštećenja erozije
Obnova i zaštita vodećeg ruba od oštećenja erozije

KOMPLETNO ODRŽAVANJE TURBINE

Neki od preostalih važnih problema koja se odnose na ove strukture uključuju komponente u tornju. Specifično, zaštita kočnih bubnjeva, brtvenih kabela, kao i popravak istrošenih i oštećenih vratila, može se lako izvesti polimernim rješenjima. U međuvremenu, cjelovitost tornja, kule i platforme može se sve zaštititi pomoću nepropusnih, vremenskootpornih i vodootpornih zaštitnih premaza.

Osim toga, neophodno je osigurati stabilne temelje tih struktura. Trendovi pokazuju da su lopatice sve veće i veće, budući da su promjeri rotora u posljednjih dvadesetak godina stalno u porastu u skladu s zahtjevima za sve većim kapacitetima. Specifično, procjena povečanja promjera za offshore lopatice iznosi 190 m  do 2030 g., gotovo dvostruko veći od lopatica današnjice, zahtjevajući čvršće temelje koji će održavati turbinu uspravno. Stoga se bilo kakvi nedostaci na betonskoj podlozi moraju brzo otkloniti uporabom kompozita za brze popravake betonskih površina.

Popravak osovine 01
Elektroliza koja uzrokuje štetu

Popravak osovine 02
Belzona 1111 se koristi za popravak podešavanja na osovini

Popravak osovine 03
Kalup na mjestu oko osovine tijekom stvrdnjavanja

Popravak osovine 04
Dovršeno popravljanje osovine pomoću Belzona 1111

OSTALI IZVORI OBNOVLJIVE ENERGIJE

UTJECAJ NA GEOTERMALNU, HYDRO I PLIMNU ENERGIJU

Iako postoje brojna rješenja za održavanje vjetroagregata, to ne znači da su ostale obnovljive energije zanemarene. Zapravo, polimerni materijali za popravak i zaštitu pokazali su se prikladnima za rješavanje mehanizama oštećenja koji utječu na geotermalnu, hidro i plimnu energiju.

Na primjer, karakteristike geotermalne tekućine mogu značajno varirati, uključujući temperaturu, kemiju i ne-kondenzirani sadržaj plina (NCG). Svi ovi mogu imati iznimno korozivno djelovanje na komponente elektrana kao što su cijevi, kućišta turbina, izmjenjivači topline i spremnici, strojevi i opreme, u kojima ima iskustva u zaštiti polimernm tehnologijama.

Prema objavljenim statistikama o stanju geotermalne tehnologije, upotreba materijala otpornih na koroziju, kao što su zaštitni premazi, možgu se  smanjiti troškovi proizvodnje za procjenjenih 0,25 centi(USD) po kWh 6. Kada se to ekstrapolira na globalnu proizvodnju električne energije geotermalnih resursa u 2015. godini (71 TWh ), ušteda kroz smanjenje korozije može premašiti više od 100 milijuna USD, a također pomaže u poboljšanju učinkovitosti pogoršane opreme.

casing00 casing01 casing02 casing03

Štoviše, popravak i zaštita lopatica turbina nije izolirana u industriji vjetroelektrana. Na razini mora, voda je 784 puta gušća od zraka, tako da plimni turbinski rotori mogu biti mnogo manji, ali još uvijek stvaraju ekvivalentne količine električne energije. Kavitacija, problem koji se očituje zbog razlike u tlaku u tekućini, istaknuta je u ovoj situaciji i može ugroziti cjelovitost lopatica, poput erozije na vjetroagregatima. Koristeći rješenje otporno na kavitaciju i eroziju, životni vijek plimnih turbina može se produžiti, čime se štiti od pogoršanja koji nastaje zbog turbulentnog protoka.

POLIMERINI MATERIJALI POKREĆU ZELENE NAMJENE

Uz brzo rastuću prisutnost obnovljivih izvora energije u zemljama poput Brazila i Kenije, jasno je da svjetska gospodarstva u nastajanju pokazuju sličan interes za transformaciju globalnog energetskog izvora s niskom razinom ugljika. Zapravo, oni se podudaraju s mnogim svojim boljie opremljenim kolegama. Ovo naglašava da val potpore zelene energije uistinu raste i privlači svjetsku pozornost. Kako se ovaj sektor širi, tako će se povečavati i veličina ulaganja; međutim, bitno je da se ova imovina održava i ostaje operativna, pružajući učinkovit povrat ulaganja.

Polimerni popravci i rješenja zaštite već su dokazali uspjeh u energetskoj industriji i do danas su na tržištu obnovljivih izvora učinili značajne dojmove. Opsežna ispitivanja i dugoročna angažiranost s vodećih tvrtki u industriji, svakako pokazuju da ti sustavi mogu učinkovito upravljati pitanjima poput erozije, korozije i abrazije.

Bez sumnje, obnovljive energije predstavljaju budući krajobraz energetskih resursa. Krajolik koji se može učinkovito održavati kroz razvoj sustava popravaka i zaštite za globalnu obnovljivu imovinu.